4 research outputs found

    The Log-Interleave Bound: Towards the Unification of Sorting and the BST Model

    Full text link
    We study the connections between sorting and the binary search tree model, with an aim towards showing that the fields are connected more deeply than is currently known. The main vehicle of our study is the log-interleave bound, a measure of the information-theoretic complexity of a permutation π\pi. When viewed through the lens of adaptive sorting -- the study of lists which are nearly sorted according to some measure of disorder -- the log-interleave bound is comparable to the most powerful known measure of disorder. Many of these measures of disorder are themselves virtually identical to well-known upper bounds in the BST model, such as the working set bound or the dynamic finger bound, suggesting a connection between BSTs and sorting. We present three results about the log-interleave bound which solidify the aforementioned connections. The first is a proof that the log-interleave bound is always within a lglgn\lg \lg n multiplicative factor of a known lower bound in the BST model, meaning that an online BST algorithm matching the log-interleave bound would perform within the same bounds as the state-of-the-art lglgn\lg \lg n-competitive BST. The second result is an offline algorithm in the BST model which uses O(LIB(π))O(\text{LIB}(\pi)) accesses to search for any permutation π\pi. The technique used to design this algorithm also serves as a general way to show whether a sorting algorithm can be transformed into an offline BST algorithm. The final result is a mergesort algorithm which performs work within the log-interleave bound of a permutation π\pi. This mergesort also happens to be highly parallel, adding to a line of work in parallel BST operations

    The Geometry of Tree-Based Sorting

    Get PDF
    We study the connections between sorting and the binary search tree (BST) model, with an aim towards showing that the fields are connected more deeply than is currently appreciated. While any BST can be used to sort by inserting the keys one-by-one, this is a very limited relationship and importantly says nothing about parallel sorting. We show what we believe to be the first formal relationship between the BST model and sorting. Namely, we show that a large class of sorting algorithms, which includes mergesort, quicksort, insertion sort, and almost every instance-optimal sorting algorithm, are equivalent in cost to offline BST algorithms. Our main theoretical tool is the geometric interpretation of the BST model introduced by Demaine et al. [Demaine et al., 2009], which finds an equivalence between searches on a BST and point sets in the plane satisfying a certain property. To give an example of the utility of our approach, we introduce the log-interleave bound, a measure of the information-theoretic complexity of a permutation ?, which is within a lg lg n multiplicative factor of a known lower bound in the BST model; we also devise a parallel sorting algorithm with polylogarithmic span that sorts a permutation ? using comparisons proportional to its log-interleave bound. Our aforementioned result on sorting and offline BST algorithms can be used to show existence of an offline BST algorithm whose cost is within a constant factor of the log-interleave bound of any permutation ?

    Multiagent Evaluation Mechanisms

    No full text
    We consider settings where agents are evaluated based on observed features, and assume they seek to achieve feature values that bring about good evaluations. Our goal is to craft evaluation mechanisms that incentivize the agents to invest effort in desirable actions; a notable application is the design of course grading schemes. Previous work has studied this problem in the case of a single agent. By contrast, we investigate the general, multi-agent model, and provide a complete characterization of its computational complexity
    corecore